80 research outputs found

    miRBaseConverter: an R/Bioconductor package for converting and retrieving miRNA name, accession, sequence and family information in different versions of miRBase

    Full text link
    Abstract Background miRBase is the primary repository for published miRNA sequence and annotation data, and serves as the “go-to” place for miRNA research. However, the definition and annotation of miRNAs have been changed significantly across different versions of miRBase. The changes cause inconsistency in miRNA related data between different databases and articles published at different times. Several tools have been developed for different purposes of querying and converting the information of miRNAs between different miRBase versions, but none of them individually can provide the comprehensive information about miRNAs in miRBase and users will need to use a number of different tools in their analyses. Results We introduce miRBaseConverter, an R package integrating the latest miRBase version 22 available in Bioconductor to provide a suite of functions for converting and retrieving miRNA name (ID), accession, sequence, species, version and family information in different versions of miRBase. The package is implemented in R and available under the GPL-2 license from the Bioconductor website ( http://bioconductor.org/packages/miRBaseConverter/ ). A Shiny-based GUI suitable for non-R users is also available as a standalone application from the package and also as a web application at http://nugget.unisa.edu.au:3838/miRBaseConverter . miRBaseConverter has a built-in database for querying miRNA information in all species and for both pre-mature and mature miRNAs defined by miRBase. In addition, it is the first tool for batch querying the miRNA family information. The package aims to provide a comprehensive and easy-to-use tool for miRNA research community where researchers often utilize published miRNA data from different sources. Conclusions The Bioconductor package miRBaseConverter and the Shiny-based web application are presented to provide a suite of functions for converting and retrieving miRNA name, accession, sequence, species, version and family information in different versions of miRBase. The package will serve a wide range of applications in miRNA research and could provide a full view of the miRNAs of interest.https://deepblue.lib.umich.edu/bitstream/2027.42/146768/1/12859_2018_Article_2531.pd

    Efficient polygenic risk scores for biobank scale data by exploiting phenotypes from inferred relatives

    Get PDF
    Polygenic risk scores are emerging as a potentially powerful tool to predict future phenotypes of target individuals, typically using unrelated individuals, thereby devaluing information from relatives. Here, for 50 traits from the UK Biobank data, we show that a design of 5,000 individuals with first-degree relatives of target individuals can achieve a prediction accuracy similar to that of around 220,000 unrelated individuals (mean prediction accuracy = 0.26 vs. 0.24, mean fold-change = 1.06 (95% CI: 0.99-1.13), P-value = 0.08), despite a 44-fold difference in sample size. For lifestyle traits, the prediction accuracy with 5,000 individuals including first-degree relatives of target individuals is significantly higher than that with 220,000 unrelated individuals (mean prediction accuracy = 0.22 vs. 0.16, mean fold-change = 1.40 (1.17-1.62), P-value = 0.025). Our findings suggest that polygenic prediction integrating family information may help to accelerate precision health and clinical intervention

    Imaging Immune and Metabolic Cells of Visceral Adipose Tissues with Multimodal Nonlinear Optical Microscopy

    Get PDF
    Visceral adipose tissue (VAT) inflammation is recognized as a mechanism by which obesity is associated with metabolic diseases. The communication between adipose tissue macrophages (ATMs) and adipocytes is important to understanding the interaction between immunity and energy metabolism and its roles in obesity-induced diseases. Yet visualizing adipocytes and macrophages in complex tissues is challenging to standard imaging methods. Here, we describe the use of a multimodal nonlinear optical (NLO) microscope to characterize the composition of VATs of lean and obese mice including adipocytes, macrophages, and collagen fibrils in a label-free manner. We show that lipid metabolism processes such as lipid droplet formation, lipid droplet microvesiculation, and free fatty acids trafficking can be dynamically monitored in macrophages and adipocytes. With its versatility, NLO microscopy should be a powerful imaging tool to complement molecular characterization of the immunity-metabolism interface

    Single-Cell Profiling Reveals the Origin of Phenotypic Variability in Adipogenesis

    Get PDF
    Phenotypic heterogeneity in a clonal cell population is a well-observed but poorly understood phenomenon. Here, a single-cell approach is employed to investigate non-mutative causes of phenotypic heterogeneity during the differentiation of 3T3-L1 cells into fat cells. Using coherent anti-Stokes Raman scattering microscopy and flow cytometry, adipogenic gene expression, insulin signaling, and glucose import are visualized simultaneously with lipid droplet accumulation in single cells. Expression of adipogenic genes PPARγ, C/EBPα, aP2, LP2 suggests a commitment to fat cell differentiation in all cells. However, the lack of lipid droplet in many differentiating cells suggests adipogenic gene expression is insufficient for lipid droplet formation. Instead, cell-to-cell variability in lipid droplet formation is dependent on the cascade responses of an insulin signaling pathway which includes insulin sensitivity, kinase activity, glucose import, expression of an insulin degradation enzyme, and insulin degradation rate. Increased and prolonged insulin stimulation promotes lipid droplet accumulation in all differentiating cells. Single-cell profiling reveals the kinetics of an insulin signaling cascade as the origin of phenotypic variability in drug-inducible adipogenesis

    Neuroinflammation, Mast Cells, and Glia: Dangerous Liaisons

    Get PDF
    The perspective of neuroinflammation as an epiphenomenon following neuron damage is being replaced by the awareness of glia and their importance in neural functions and disorders. Systemic inflammation generates signals that communicate with the brain and leads to changes in metabolism and behavior, with microglia assuming a pro-inflammatory phenotype. Identification of potential peripheral-to-central cellular links is thus a critical step in designing effective therapeutics. Mast cells may fulfill such a role. These resident immune cells are found close to and within peripheral nerves and in brain parenchyma/meninges, where they exercise a key role in orchestrating the inflammatory process from initiation through chronic activation. Mast cells and glia engage in crosstalk that contributes to accelerate disease progression; such interactions become exaggerated with aging and increased cell sensitivity to stress. Emerging evidence for oligodendrocytes, independent of myelin and support of axonal integrity, points to their having strong immune functions, innate immune receptor expression, and production/response to chemokines and cytokines that modulate immune responses in the central nervous system while engaging in crosstalk with microglia and astrocytes. In this review, we summarize the findings related to our understanding of the biology and cellular signaling mechanisms of neuroinflammation, with emphasis on mast cell-glia interactions

    Coherent anti-Stokes Raman scattering imaging of lipids in cancer metastasis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lipid-rich tumours have been associated with increased cancer metastasis and aggressive clinical behaviours. Nonetheless, pathologists cannot classify lipid-rich tumours as a clinically distinctive form of carcinoma due to a lack of mechanistic understanding on the roles of lipids in cancer development.</p> <p>Methods</p> <p>Coherent anti-Stokes Raman scattering (CARS) microscopy is employed to study cancer cell behaviours in excess lipid environments <it>in vivo </it>and <it>in vitro</it>. The impacts of a high fat diet on cancer development are evaluated in a Balb/c mice cancer model. Intravital flow cytometry and histology are employed to enumerate cancer cell escape to the bloodstream and metastasis to lung tissues, respectively. Cancer cell motility and tissue invasion capability are also evaluated in excess lipid environments.</p> <p>Results</p> <p>CARS imaging reveals intracellular lipid accumulation is induced by excess free fatty acids (FFAs). Excess FFAs incorporation onto cancer cell membrane induces membrane phase separation, reduces cell-cell contact, increases surface adhesion, and promotes tissue invasion. Increased plasma FFAs level and visceral adiposity are associated with early rise in circulating tumour cells and increased lung metastasis. Furthermore, CARS imaging reveals FFAs-induced lipid accumulation in primary, circulating, and metastasized cancer cells.</p> <p>Conclusion</p> <p>Lipid-rich tumours are linked to cancer metastasis through FFAs-induced physical perturbations on cancer cell membrane. Most importantly, the revelation of lipid-rich circulating tumour cells suggests possible development of CARS intravital flow cytometry for label-free detection of early-stage cancer metastasis.</p

    Gene selection for optimal prediction of cell position in tissues from single-cell transcriptomics data.

    Get PDF
    Single-cell RNA-sequencing (scRNAseq) technologies are rapidly evolving. Although very informative, in standard scRNAseq experiments, the spatial organization of the cells in the tissue of origin is lost. Conversely, spatial RNA-seq technologies designed to maintain cell localization have limited throughput and gene coverage. Mapping scRNAseq to genes with spatial information increases coverage while providing spatial location. However, methods to perform such mapping have not yet been benchmarked. To fill this gap, we organized the DREAM Single-Cell Transcriptomics challenge focused on the spatial reconstruction of cells from the Drosophila embryo from scRNAseq data, leveraging as silver standard, genes with in situ hybridization data from the Berkeley Drosophila Transcription Network Project reference atlas. The 34 participating teams used diverse algorithms for gene selection and location prediction, while being able to correctly localize clusters of cells. Selection of predictor genes was essential for this task. Predictor genes showed a relatively high expression entropy, high spatial clustering and included prominent developmental genes such as gap and pair-rule genes and tissue markers. Application of the top 10 methods to a zebra fish embryo dataset yielded similar performance and statistical properties of the selected genes than in the Drosophila data. This suggests that methods developed in this challenge are able to extract generalizable properties of genes that are useful to accurately reconstruct the spatial arrangement of cells in tissues

    Inferring microRNA and transcription factor regulatory networks in heterogeneous data

    Get PDF
    Background: Transcription factors (TFs) and microRNAs (miRNAs) are primary metazoan gene regulators. Regulatory mechanisms of the two main regulators are of great interest to biologists and may provide insights into the causes of diseases. However, the interplay between miRNAs and TFs in a regulatory network still remains unearthed. Currently, it is very difficult to study the regulatory mechanisms that involve both miRNAs and TFs in a biological lab. Even at data level, a network involving miRNAs, TFs and genes will be too complicated to achieve. Previous research has been mostly directed at inferring either miRNA or TF regulatory networks from data. However, networks involving a single type of regulator may not fully reveal the complex gene regulatory mechanisms, for instance, the way in which a TF indirectly regulates a gene via a miRNA. Results: We propose a framework to learn from heterogeneous data the three-component regulatory networks, with the presence of miRNAs, TFs, and mRNAs. This method firstly utilises Bayesian network structure learning to construct a regulatory network from multiple sources of data: gene expression profiles of miRNAs, TFs and mRNAs, target information based on sequence data, and sample categories. Then, in order to produce more meaningful results for further biological experimentation and research, the method searches the learnt network to identify the interplay between miRNAs and TFs and applies a network motif finding algorithm to further infer the network. We apply the proposed framework to the data sets of epithelial-to-mesenchymal transition (EMT). The results elucidate the complex gene regulatory mechanism for EMT which involves both TFs and miRNAs. Several discovered interactions and molecular functions have been confirmed by literature. In addition, many other discovered interactions and bio-markers are of high statistical significance and thus can be good candidates for validation by experiments. Moreover, the results generated by our method are compact, involving a small number of interactions which have been proved highly relevant to EMT. Conclusions: We have designed a framework to infer gene regulatory networks involving both TFs and miRNAs from multiple sources of data, including gene expression data, target information, and sample categories. Results on the EMT data sets have shown that the proposed approach is able to produce compact and meaningful gene regulatory networks that are highly relevant to the biological conditions of the data sets. This framework has the potential for application to other heterogeneous datasets to reveal the complex gene regulatory relationships.Thuc D Le, Lin Liu, Bing Liu, Anna Tsykin, Gregory J Goodall, Kenji Satou and Jiuyong L

    A novel single-cell based method for breast cancer prognosis

    Get PDF
    Breast cancer prognosis is challenging due to the heterogeneity of the disease. Various computational methods using bulk RNA-seq data have been proposed for breast cancer prognosis. However, these methods suffer from limited performances or ambiguous biological relevance, as a result of the neglect of intra-tumor heterogeneity. Recently, single cell RNA-sequencing (scRNA-seq) has emerged for studying tumor heterogeneity at cellular levels. In this paper, we propose a novel method, scPrognosis, to improve breast cancer prognosis with scRNA-seq data. scPrognosis uses the scRNA-seq data of the biological process Epithelial-to-Mesenchymal Transition (EMT). It firstly infers the EMT pseudotime and a dynamic gene co-expression network, then uses an integrative model to select genes important in EMT based on their expression variation and differentiation in different stages of EMT, and their roles in the dynamic gene co-expression network. To validate and apply the selected signatures to breast cancer prognosis, we use them as the features to build a prediction model with bulk RNA-seq data. The experimental results show that scPrognosis outperforms other benchmark breast cancer prognosis methods that use bulk RNA-seq data. Moreover, the dynamic changes in the expression of the selected signature genes in EMT may provide clues to the link between EMT and clinical outcomes of breast cancer. scPrognosis will also be useful when applied to scRNA-seq datasets of different biological processes other than EMT.Xiaomei Li, Lin Liu, Gregory J. Goodall, Andreas Schreiber, Taosheng Xu, Jiuyong Li, Thuc D. L
    • …
    corecore